The Techniques of Fibre Optic Splicing

Posted on by FS.COM

In the early days of fiber optics, fusion-splicing was an exacting, demanding task. Today — although care is needed — the splicing procedure is straightforward, with key steps fully automated.

There are many occasions when fibre optic splices are needed. One of the most common occurs when a fibre optic cable that is available is not sufficiently long for the required run. In this case it is possible to splice together two cables to make a permanent connection. As fibre optic cables are generally only manufactured in lengths up to about 5 km, when lengths of 10 km are required, for example, then it is necessary to splice two lengths together.

Mechanical and fusion splicing are two broad categories that describe the techniques used for fiber splicing. A mechanical splice is a fiber splice where mechanical fixtures and materials perform fiber alignment and connection. A fusion splice is a fiber splice where localized heat fuses or melts the ends of two optical fibers together. Each splicing technique seeks to optimize splice performance and reduce splice loss. Low-loss fiber splicing results from proper fiber end preparation and alignment.

Fiber splice alignment can involve passive or active fiber core alignment. Passive alignment relies on precision reference surfaces, either grooves or cylindrical holes, to align fiber cores during splicing. Active alignment involves the use of light for accurate fiber alignment. Active alignment may consist of either monitoring the loss through the splice during splice alignment or by using a microscope to accurately align the fiber cores for splicing. To monitor loss either an optical source and optical power meter or an optical time domain reflectometer (OTDR) are used. Active alignment procedures produce low-loss fiber splices.

Tags: , ,
FS.COM FHD Fiber Enclosure
FS.COM FMU CWDM DWDM MUX/DEMUX
Calendar
February 2017
S M T W T F S
« Jan    
 1234
567891011
12131415161718
19202122232425
262728